

基于车载多轴差分吸收光谱技术的武汉氮氧化物 分布及排放研究

黄业园^{1,2},李昂^{1*},秦敏¹,胡肇焜¹,谢品华^{1,2,3,4},徐晋¹,段俊¹,

任红梅^{1,2},田鑫⁴,李晓梅^{1,2},任博^{1,2},张强^{1,2},钟鸿雁^{1,4}

¹中国科学院合肥物质科学研究院安徽光学精密机械研究所,环境光学与技术重点实验室,安徽 合肥 230031; ²中国科学技术大学,安徽 合肥 230026;

³中国科学院区域大气环境研究卓越创新中心,中国科学院城市环境研究所,福建 厦门 361000; ⁴安徽大学物质科学与信息技术研究院,安徽 合肥 230039

摘要 2020 年 2 月 29 日至 3 月 14 日,针对疫情期间武汉的 NO_x 污染问题,本文采用车载 MAX-DOAS 和便携式 紫外 DOAS 对武汉三环的 NO_x 排放进行了协同观测。利用车载 DOAS 获取了走航沿线的 NO₂ 柱浓度分布,结合 便携式紫外 DOAS 测量的 NO 和 NO₂ 浓度计算得到[NO_x]/[NO₂],然后耦合风场计算得到了武汉三环 NO_x 的 排放通量及误差。结果表明:观测期间武汉三环 NO_x 的平均排放通量约为 10.78 mol/s,最低为 7.78 mol/s,最高 为 15.71 mol/s。相对于使用平均[NO_x]/[NO₂],采用便携式紫外 DOAS 测量的车载 MAX-DOAS 走航沿线的实 时[NO_x]/[NO₂],可以有效降低[NO_x]/[NO₂]误差引起的 NO_x 通量误差,但该方法不推荐在有大量近地面 NO_x 排放源的场景应用。

关键词 光谱学; 氮氧化物 NO_x; 排放通量; 车载 MAX-DOAS
 中图分类号 O433 文献标志码 A

doi: 10.3788/AOS202141.1030002

Nitrogen Oxides Spatial Distribution and Emissions with Mobile Multi-Axis Differential Optical Absorption Spectroscopy in Wuhan City

Huang Yeyuan^{1,2}, Li Ang^{1*}, Qin Min¹, Hu Zhaokun¹, Xie Pinhua^{1,2,3,4}, Xu Jin¹, Duan Jun¹, Ren Hongmei^{1,2}, Tian Xin⁴, Li Xiaomei^{1,2}, Ren Bo^{1,2}, Zhang Qiang^{1,2}, Zhong Hongyan^{1,4}

 1 Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics,

Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China;

 $^{\rm 2}$ University of Science and Technology of China , Hefei , Anhui 230026 , China ;

³ CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361000, China;

⁴ Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230039, China

Abstract For NO_x pollutions in Wuhan during the outbreak of COVID-19, we applied a mobile MAX-DOAS and a portable ultraviolet DOAS to cooperatively measure NO_x concentration in the third ring road of Wuhan from Feb. 29th to Mar. 14th, 2020. The mobile MAX-DOAS acquired the vertical column concentration (VCD) distribution of NO_2 along its course and the portable ultraviolet DOAS measured the NO and NO_2 concentrations to calculate

收稿日期: 2020-11-20; 修回日期: 2020-12-04; 录用日期: 2020-12-17

基金项目:国家自然科学基金(41775029,41530644,U19A2044)、国家重点研发计划(2018YFC0213201)

* E-mail: angli@aiofm.ac.cn

 $[NO_x]/[NO_2]$. Then, the NO_x emission flux and its error of the third ring road of Wuhan were calculated in conjunction with the data of the wind field. The results show that the NO_x emission flux during the measurements in the third ring of Wuhan ranges from 7.78 mol/s to 15.71 mol/s, about 10.78 mol/s on average. Compared with the average $[NO_x]/[NO_2]$, the real-time $[NO_x]/[NO_2]$ along the route of the mobile MAX-DOAS derived from the portable ultraviolet DOAS could effectively reduce the error of NO_x emission flux caused by the $[NO_x]/[NO_2]$ error. However, this method is not recommended in scenarios with substantial near-surface NO_x emission sources. **Key words** spectroscopy; nitrogen oxides NO_x; emission flux; mobile MAX-DOAS **OCIS codes** 300.1030; 300.6170; 300.6540

1 引 言

氮氧化物(NO_x,包括 NO 和 NO₂)是大气中重 要的痕量气体,在大气气相化学反应中扮演着重要 角色^[1]。当 NO_x 过量排放时,会引起以颗粒物为 主要特征的大气污染。我国实施二氧化硫(SO₂)排 放削减政策后,SO₂ 排放量下降显著^[2],但无机污染 物 NO_x 的相对比例越来越高,NO_x 气相化学反应 驱动的二次转化正逐渐成为我国雾霾污染的动力, NO_x 逐渐成为我国雾霾的主要无机组成部分。研 究 NO_x 的排放通量,特别是面源和点源的 NO_x 排 放通量量化研究,对于我国大气污染控制及污染成 因研究具有重要意义^[2-3]。

差分吸收光谱(DOAS)技术是 20 世纪 70 年代 由 Platt 等^[4]提出的大气遥感技术。在随后的几十 年中,DOAS 技术在大气痕量气体浓度测量中得到 了广泛应用,如测量二氧化硫(SO₂)、二氧化氮 (NO₂)、乙二醛(CHOCHO)、甲醛(HCHO)等大气 痕量气体^[4],而且人们发展出了多种 DOAS 技术, 如长光程 DOAS (Long Path DOAS)、MAX-DOAS (Multi Axis DOAS)、天顶 DOAS (Zenith Sky DOAS)、便携式紫外 DOAS(Portable Ultraviolet DOAS)等^[4-14]。将 DOAS 仪器置于不同的平台(如 汽车、飞机、卫星等)上,便可以获取痕量气体浓度的 空间分布。车载 MAX-DOAS 是将 MAX-DOAS 置 于汽车平台上进行移动观测的技术[5],基于该技术 可以进行痕量气体柱浓度分布的研究[6],也可以面 向城市面源、工业面源或者工业点源进行排放通量 的研究^[7-10]。

车载 MAX-DOAS 针对 NO_x 排放通量测量的 一般步骤为:利用车载 MAX-DOAS 测量汽车走航 沿线的 NO₂ 垂直柱浓度(VCD),然后计算 NO₂ 排 放通量,再通过 NO_x 与 NO₂ 的比例换算得到 NO_x 排放通量^[7]。通常使用原位观测的 NO 和 NO₂ 浓 度数据计算[NO_x]/[NO₂]^[7]。近地面原位观测 NO 和 NO₂ 浓度数据存在一个问题,即当观测点处 于 NO 和 NO₂ 密集排放环境时,如汽车密集的城市,根据近地面原位观测计算得到的[NO_x]/ [NO₂]就难以保证具有代表性。近些年,针对近地面原位观测[NO_x]/[NO₂]难以保证具有代表性的问题,国外学者将观测 NO、NO₂ 的仪器置于汽车上,测量走航沿线上 NO、NO₂ 的浓度数据,计算走航沿线上[NO_x]/[NO₂]的实时值,进而将其代入工业园区 NO_x 排放通量的公式中进行计算^[10]。需要注意的是,此方法针对的是无密集排放的观测对象,如工业园区、交通排放稀疏的城市。

2020年初,我国武汉暴发了新型冠状病毒疫情。为保障人民生命安全,防止疫情扩散传播,我国政府迅速做出了武汉封城的决定,对武汉市区进行严格的管理,控制人口流动,保持社交距离。针对疫情期间武汉 NO_x 排放问题,本研究团队采用车载MAX-DOAS和便携式紫外 DOAS 同步观测方式, 开展了车载移动走航观测,获得了武汉三环 NO₂ 垂直柱浓度的空间分布、NO_x 与 NO₂ 实时比例的空间分布以及 NO_x 排放通量。

2 实验原理及方法

2.1 实验概述

本研究团队于 2020 年 3 月在武汉市三环路进 行车载走航观测,观测路线如图 1 所示。为了实时 测量走航路线上的[NO_x]/[NO₂]数据,将车载

图 1 车载 MAX-DOAS 绕行观测路线(武汉三环, 图片版权[©] Google Earth)

Fig. 1 Measurement route of mobile MAX-DOAS (the third ring road of Wuhan, map data copyright © Google Earth)

MAX-DOAS 和便携式紫外 DOAS 置于同一车内 进行观测,利用车载 MAX-DOAS 测量走航沿线上 NO₂ 的垂直柱浓度,利用便携式紫外 DOAS 测量走 航沿线上 NO、NO₂ 的点浓度,进而计算[NO_x]/ [NO₂]。

2.2 实验仪器及原理

2.2.1 DOAS 原理

DOAS 技术是由 Platt 教授^[11]于 20 世纪 70 年 代基于比尔-朗伯定律提出的采用宽波段反演吸收 气体浓度的方法,该方法已被广泛应用于大气痕量 气体的测量。该方法采用宽波段进行测量,显著降 低了实际测量中单中心波长反演的随机误差。比 尔-朗伯定律的表达式为^[4]

$$I = I_0 \exp[-\sigma(\lambda) \cdot c \cdot L],$$
 (1)
式中: I_0 为入射光强; I 为穿过吸收气体后的吸收光
强; $\sigma(\lambda)$ 为气体收截面; c 为吸收气体的质量浓度; L
为光经过吸收气体的路径。将(1)式的 I_0 移动至左
侧并取对数可以得到

 $\ln(I/I_0) = -\sigma(\lambda) \cdot S_{\rm CD}, \qquad (2)$

式中:ln(*I*/*I*₀)为差分光学厚度;*S*_{CD}为斜柱浓度。 对测量的光谱取对数后差分,再采用 DOAS 方法反 演就可以获得 *c* • *L*。若 *L* 已知,并且浓度分布均 匀,则可以计算出浓度 *c*;若 *L* 未知,反演的 *c* • *L* 通常被定义为差分斜柱浓度(DSCD)。

根据使用的光源, DOAS 技术又可分为被动 DOAS 技术和主动 DOAS 技术,其中车载 MAX-DOAS 采用太阳散射光为光源,为被动 DOAS 技 术,而便携式紫外 DOAS 采用氘灯为光源,为主动 DOAS 技术。这两种技术对应的 DOAS 算法和算 法配置不同。

2.2.2 车载 MAX-DOAS

本实验采用的车载 MAX-DOAS 由安徽光学精 密机械研究所自主研发。车载 MAX-DOAS 将传统 的地基 MAX-DOAS 置于汽车上, MAX-DOAS 主 要由导光单元、光谱采集单元和计算机组成^[9]。导 光单元主要由三维电机云台和望远镜组成,并置于 车顶上;望远镜可以在 0°~90°范围内自由旋转;光 谱采集单元置于汽车内部,该单元主要由温度控制 系统和光谱仪组成,其中光谱仪置于温度控制系统 内部,以保证恒温运行,减小光谱漂移。导光单元和 光谱仪采用光纤连接,导光单元采集的太阳散射光 经由 光纤传输 至光谱仪;车载 MAX-DOAS 在 MAX-DOAS 基础上增加了高精度 GPS 模块,该模 块位于车顶,记录汽车行驶轨迹。计算机置于汽车

第 41 卷 第 10 期/2021 年 5 月/光学学报

内部,主要负责光谱数据和 GPS 数据的采集。图 2 给出了车载 MAX-DOAS 系统图。

Fig. 2 Mobile MAX-DOAS system

QDOAS为比利时皇家空间飞行研究所(Royal Belgian Institute for Space Aeronomy)开发的 DOAS算法软件,主要用于痕量气体浓度的反 演^[15]。车载 MAX-DOAS技术理论上可以在0°~ 90°天顶角范围内进行观测。采用 QDOAS反演车 载 MAX-DOAS测量的光谱,进而获取对流层污染 气体的差分斜柱浓度,然后通过大气质量因子 (AMF)将差分斜柱浓度转换为垂直柱浓度^[5]。考 虑到城市内部多有高楼大厦,因此采用过低的角度 测量斜柱浓度并不合适。同时,过多的观测角度需 要花费一定的时间进行角度调整,导致观测效率较低,因此本次实验选取 30°和 90°这两个观测角度, 采用 4 次 30°观测、1 次 90°观测的循环观测模式。

由于大气中含有不同成分的气体,因此会在不同波段吸收太阳光谱,从而对目标气体的反演造成 了干扰。为了将目标气体浓度正确地反演出来,通 常需要在 QDOAS 中配置对应气体的吸收截面。本 文选取 338~370 nm 波段反演 NO₂ 的浓度,该波段 内有 O₃、O₄ 和 HCHO 气体的干扰,因此需要扣除。 同时,大气中 N₂、O₂ 分子的拉曼散射会导致太阳光 谱结构变形^[16],即 Ring 效应,因此也需要扣除 Ring 结构。表 1 列出了 QODAS 反演算法的配置^[9]。

采用 QDOAS 软件反演车载 MAX-DOAS 观测 光谱,QDOAS 以当次循环 90°观测角度下的斜柱浓 度为参考谱,则 30°观测下对应的差分斜柱浓 度为^[9]

$$D_{\rm SCD,30^{\circ}} = S_{\rm CD,30^{\circ}} - S_{\rm CD,90^{\circ}},$$
 (3)

式中: $S_{CD,30^{\circ}}$ 和 $S_{CD,90^{\circ}}$ 分别为 30° 和 90° 观测下的斜柱浓度。

	表 1	QDOAS	反演	NO_2	的配置
--	-----	-------	----	--------	-----

Table 1 Parameters for NO₂ retrieval with QDOAS

Parameter	Content		
Fitting wavelength range /nm	338-370		
Polynomial fitting order	5		
NO_2 absorption cross-section	Vandaele,1996(220 K,298 K)		
O_3 absorption cross-section	Bogumil,2003(223 K,243 K)		
O_4 absorption cross-section	Thalman,2013(293 K)		
HCHO absorption cross-section	Meller,2000(297 K)		
Ring absorption cross-section	Calculated by DOASIS software		

通过 AMF 将 30°观测下的差分斜柱浓度转化 为垂直柱浓度^[9],即

$$V_{\rm CD} = \frac{D_{\rm SCD,30^{\circ}}}{A_{\rm MF,30^{\circ}} - A_{\rm MF,90^{\circ}}},$$
(4)

式中: D_{SCD.30°}为 30°观测下的差分斜柱浓度; A_{MF.30°} 和 A_{MF.90°}分别为 30°和 90°观测下的大气质量因子。 车载 MAX-DOAS 在不同观测角度下的 AMF 可以 使用几何近似计算^[5], 即

$$A_{\rm MF,\alpha} = \frac{1}{\sin \alpha},\tag{5}$$

从而(4)式可以写为

$$V_{\rm CD} = \frac{D_{\rm SCD,30^{\circ}}}{A_{\rm MF,30^{\circ}} - A_{\rm MF,90^{\circ}}} = \frac{D_{\rm SCD,30^{\circ}}}{\frac{1}{\sin 30^{\circ}} - 1} = D_{\rm SCD,30^{\circ}}.$$

图 3 为 QDOAS 反演 NO2 差分斜柱浓度的示

(6)

图 3 NO₂ 差分斜柱浓度拟合示例及拟合误差(RMS)。 (a)拟合示例;(b)拟合误差

第 41 卷 第 10 期/2021 年 5 月/光学学报

2.2.3 便携式紫外 DOAS

本次实验采用的便携式紫外 DOAS 为安徽光 学精密机械研究所自主研发的,它主要由光谱仪、反 射池、氘灯、气体泵和微型计算机 5 个模块组成^[12], 如图 4 所示。实验时将便携式紫外 DOAS 置于车 内,气体采集管路一端置于车顶,另一端连接便携式 紫外 DOAS。由气泵将外界气体抽取至反射池,氘 灯发出的光经由反射池的反射镜多次反射后进入光 谱仪,由光谱仪采集光谱。微型计算机采集光谱数 据后在线反演出 NO 和 NO₂ 气体的浓度。便携式 紫外 DOAS 的位置信息与车载 MAX-DOAS 共享。

图 4 便携式紫外 DOAS 系统示意图

Fig. 4 Schematic of portable ultraviolet DOAS system

根据便携式紫外 DOAS 测量的 NO 和 NO₂ 气体浓度可以计算得到[NO_x]/[NO₂],第 i 次测量的 [NO_x]/[NO₂]为^[10]

$$R(\mathrm{NO}_{x})_{i} = \frac{[\mathrm{NO}_{x}]_{i}}{[\mathrm{NO}_{2}]_{i}} = \frac{[\mathrm{NO}_{2}]_{i} + [\mathrm{NO}]_{i}}{[\mathrm{NO}_{2}]_{i}} = 1 + \frac{[\mathrm{NO}]_{i}}{[\mathrm{NO}_{2}]_{i}}, \qquad (7)$$

式中: $[NO_x]_i$ 为第*i*次测量的 NO_x浓度(体积分数); $[NO]_i$ 为第*i*次测量的 NO 的点浓度(体积分数); $[NO_2]_i$ 为第*i*次测量的 NO₂的点浓度(体积分数)。

2.3 NO_x 排放通量

对于面源 NO_x,其排放通量的获取通常分为两 步:第一步是计算 NO₂ 的排放通量,第二步是根据 获得的平均[NO_x]/[NO₂]和平均寿命对 NO₂ 排放 通量进行校正。[NO_x]/[NO₂]通常为整个区域的 平均值,一般采用定点观测的平均值或者通过模型 模拟得到^[10]。采用平均[NO_x]/[NO₂]进行校正, 会引入一定的问题。因为采用的是平均[NO_x]/ [NO₂],所以[NO_x]/[NO₂]的不确定性对 NO_x 排 放通量的影响是系统性的。

采用在车上搭载便携式紫外 DOAS 实时测量 NO 和 NO₂ 的浓度数据,进而获得实时的[NO_x]/

[NO₂],以避免平均[NO_x]/[NO₂]的不确定性的 系统性影响。需要注意的是,若观测沿线近地面附 近存在大量的 NO_x 排放源,如汽车,则实时的 [NO_x]/[NO₂]将不适合用于 NO_x 排放通量的计 算。考虑到实验期间武汉环路上的车辆极少,因此 在车上搭载便携式紫外 DOAS 测量实时[NO_x]/ [NO₂]的方法可行。但是 NO_x 排放通量的计算方 法需要稍作修正:

第一步,将反演得到的 NO₂ 垂直柱浓度根据 [NO_x]/[NO₂]校正为 NO_x 垂直柱浓度,第 i 次测 量的 NO_x 垂直柱浓度为

 $V_{CD}(NO_x)_i = R(NO_x)_i \cdot V_{CD}(NO_2)_i, \quad (8)$ 式中: $V_{CD}(NO_2)_i$ 为第 *i* 次测量的 NO₂ 垂直柱浓度。

第二步,根据通量模型计算 NO_x 的排放通量, 计算公式为^[14]

$$F(\mathrm{NO}_{x}) = c_{\tau} \sum_{i} V_{\mathrm{CD}}(\mathrm{NO}_{x})_{i} \bullet$$
$$u \bullet (s_{iv} \cos \theta - s_{ix} \sin \theta), \qquad (9)$$

式中: $c_{\tau} = \exp[r/(u\tau)]$ 为 NO_x 的寿命校正系数,r

第 41 卷 第 10 期/2021 年 5 月/光学学报

为观测路径距离观测中心的平均距离,约为 15 km, *u* 为观测期间的平均风速, τ 为 NO_x 的寿命(由于 观测时间为 3 月份,NO_x 的平均寿命约为 6 h± 1 h^[7]); θ 为观测期间的平均风向; $s = (s_{ix}, s_{iy})$ 为第 *i* 次测量时的汽车的行驶向量。

3 结果与分析

3.1 NO2 垂直柱浓度及其对比

3.1.1 NO2 垂直柱浓度

根据表 1 所示的算法配置以及(3)、(6)式,利用 QDOAS 软件反演得到了观测路径上对流层中 NO₂ 的垂直柱浓度。结合 GPS 记录的经纬度数据,绘制 了 NO₂ 垂直柱浓度的空间分布,如图 5 所示。观测 期间,武汉多为阴雨天气,受观测期间天气的影响, 有效观测日仅有 7 d。由于武汉东三环外侧分布有 冶炼工厂,因此观测期间在观测区域内多次观测到 了 NO₂ 垂直柱浓度的高值,NO₂ 垂直柱浓度的最 高值为 9.40×10¹⁶ molecule/cm²。

图 5 车载 MAX-DOAS 测量的 NO₂ 垂直柱浓度空间分布以及观测期间的平均风速 u、

平均风向(图中箭头为观测期间的平均风向)

Fig. 5 NO $_2$ VCD spatial distribution measured by mobile MAX-DOAS and the average wind speed (u)

and wind direction (the arrows indicate the average wind direction)

图 6 为武汉市自 2019 年 9 月至 2020 年 3 月 NO₂ 的月均质量浓度(数据来源于空气质量在线检 测平台, 网址为 https://www.aqistudy.cn/ historydata/)。从图中可以看出, NO2 月均质量浓

度在 2 月份和 3 月份下降明显,相对于 2019 年 12 月份下降了约 66.7%,在 2020 年 2 月至 3 月期间, 武汉市 NO₂ 浓度的整体水平不高,因此在观测期 间,NO₂ 垂直柱浓度整体不高。

3.1.2 车载 MAX-DOAS 和 Tropomi 的 NO₂ 垂直 柱浓度对比

第 41 卷 第 10 期/2021 年 5 月/光学学报

Tropomi (Tropospheric Monitoring Instrument) 为搭载在哨兵 5 号上于 2017 年 10 月 13 日发射的 探测器,它可以探测 NO₂、SO₂、HCHO 等大气痕量 气体 (https: // s5phub. copernicus. eu/dhus/#/ home),其空间分辨率为 3.5 km×7 km。为验证 NO₂ 柱浓度测量的一致性,将观测期间车载 MAX-DOAS 测量的 NO₂ 垂直柱浓度与 Tropomi 测量的 对流层中的 NO₂ 垂直柱浓度产品进行对比。图 7 (a)给出了 2020 年 2 月 29 日车载 MAX-DOAS 测 量的 NO₂垂直柱浓度和 Tropomi 测量的 NO₂ 垂直 柱浓度,图 7 b 为观测期间(7 d 内)车载 MAX-DOAS 测量的 NO₂ 垂直柱浓度均值与 Tropomi 测 量的 NO₂ 垂直柱浓度均值的对比结果,可见,二者 的相关系数 $R^2 = 0.698$,具有较好的相关性。

图 7 2月 29 日车载 MAX-DOAS 测量的 NO₂ 垂直柱浓度以及 Tropomi 测量的对流层中的 NO₂ 垂直柱浓度。 (a)两者的对比;(b)两者的相关系数

Fig. 7 NO₂ VCD measured by Mobile MAX-DOAS and NO₂ VCD in troposphere measured by Tropomi on Feb. 29th. (a) Comparison of NO₂ VCDs; (b) correlation coefficient of NO₂ VCDs

3.2 [NO_x]/[NO₂]的值

根据便携式紫外 DOAS 输出的 NO 和 NO₂ 的浓 度数 据,用(7)式计算了 NO_x 与 NO₂ 的浓度比 $R(NO_x)$,然后结合 GPS 记录的经纬度数据,得到了 $R(NO_x)$ 的分布,如图 8 所示。由图 8 可知,在 3 月 3 日和 3 月 10 日观测期间, $R(NO_x)$ 的空间分布波动较 大,而在 3 月 14 日观测期间 $R(NO_x)$ 整体较高。

3.3 风 场

风场决定了污染物的扩散速度和扩散方向,是 车载 MAX-DOAS 测量污染气体排放通量的重要参数,车载 MAX-DOAS 观测期间的风场数据可由观 测或者模型模拟等方法获得。欧洲中期天气预报中 心(European Centre for Medium-Range Weather Forecasts, ECMWF)是服务于全球天气预报及大 气成分研究的权威机构(https://cds. climate. copernicus. eu/cdsapp #!/search? type = dataset),该机构采用 CAMS 模型模拟不同高度的 风场,然后通过 ERA5 模型再分析可获得小时分辨 率的不同高度的风场,网格的最高分辨率可达 $0.125^{\circ} \times 0.125^{\circ}$ 。针对面源、工业源等污染源排放 的气体,1000 m 以下的风场可以满足测量要求^[7], 因此本次实验采用 CAMS 模型再分析的 1000 m 以 下的空间分辨率为 $0.125^{\circ} \times 0.125^{\circ}$ 、时间分辨率为 1 h 的数据。平均风场详见图 5。

3.4 NO_x 排放通量的误差来源

根据(9)式,车载 MAX-DOAS 测量 NO_x 排放 通量的主要误差来源为[NO_x]/[NO₂]误差,NO₂ 垂直柱浓度误差、采样分辨率测量误差、风速及风向 不确定性^[14]。由误差的传播和合成定理可知通量 误差为

$$\Delta F = \sqrt{\Delta F_{R(NO_x)}^2 + \Delta F_{VCD}^2 + \Delta F_s^2 + \Delta F_u^2 + \Delta F_{\theta}^2},$$
(10)

式中: $\Delta F_{R(NO_x)}$ 为[NO_x]/[NO_2]误差引起的通量误 差; ΔF_{VCD} 为垂直柱浓度误差引起的通量误差; ΔF_s 为汽车采样分辨率误差引起的通量误差(由于汽车 的采样分辨率由 GPS 记录,因此采样分辨率误差为 GPS 误差); ΔF_u 为风速不确定性引起的通量误差; ΔF_{θ} 为风向不确定性引起的通量误差。

3.4.1 [NO_x]/[NO₂]误差

[NO_x]/[NO₂]由便携式紫外 DOAS 测得的实时 NO 和 NO₂ 浓度计算得到,因此 NO_x 误差由 NO 和 NO₂ 的测量误差决定。根据误差传播定理^[17],*R*(NO_x)的误差为

$$\Delta R (\mathrm{NO}_{x}) = \sqrt{\left[\frac{\partial R(\mathrm{NO}_{x})}{\partial [\mathrm{NO}]} \cdot \Delta [\mathrm{NO}]\right]^{2} + \left[\frac{\partial R(\mathrm{NO}_{x})}{\partial [\mathrm{NO}_{2}]} \cdot \Delta [\mathrm{NO}_{2}]\right]^{2}} = \frac{[\mathrm{NO}]}{[\mathrm{NO}_{2}]} \sqrt{\left(\frac{\Delta [\mathrm{NO}]}{[\mathrm{NO}]^{2}}\right)^{2} + \left(\frac{\Delta [\mathrm{NO}_{2}]}{[\mathrm{NO}_{2}]^{2}}\right)^{2}}, \quad (11)$$

式中: Δ [NO]为 NO 浓度的测量误差; Δ [NO₂]为 NO₂ 浓度的测量误差。

3.4.2 垂直柱浓度误差

由于垂直柱浓度为差分斜柱浓度与差分大气质 量因子(DAMF)的比值,因此垂直柱浓度误差的主 要来源为差分斜柱浓度的拟合误差和 AMF 的误差。由差分斜柱浓度的拟合误差和 DAMF 误差引 起的垂直柱浓度误差为

$$\Delta V_{\rm CD} = \sqrt{\left(\frac{\partial V_{\rm CD}}{\partial S_{\rm CD}} \Delta S_{\rm CD}\right)^2 + \left(\frac{\partial V_{\rm CD}}{\partial D_{\rm AMF}} \Delta D_{\rm AMF}\right)^2} = \frac{1}{D_{\rm AMF}} \sqrt{\Delta S_{\rm CD}^2 + \left(\frac{S_{\rm CD} \cdot \Delta D_{\rm AMF}}{D_{\rm AMF}}\right)^2}, \quad (12)$$

式中: ΔS_{CD} 为 SCD 的反演误差; ΔD_{AMF} 为差分大气 质量因子的误差。

DAMF 采用几何近似,几何近似的 DAMF 误 差约为 \pm 10%^[7]; DSCD 的误差主要来源于 QDOAS 的拟合误差。

吸收截面作为 QDOAS 反演的拟合标准,主要 由实验室测量得到,其本身存在测量误差,因此吸收 截面误差会引起垂直柱浓度误差,进而引入排放通 量测量误差^[18]。吸收截面总误差约为±5%^[19],由 吸收截面误差引起的通量误差正比于测量的排放通 量,约为±5%。

3.4.3 GPS 误差

2.2.2节提到,汽车行驶轨迹由 GPS 记录,因 此采样分辨率的误差主要来源于 GPS 测量误差。 此次实验采用的是高精度 GPS,其测量误差在 -1.5~1.5 m 范围内。

3.4.4 风场不确定性

风场时空波动(即风场的不确定性)是车载 MAX-DOAS通量误差的来源。对于车载 MAX-DOAS观测,耗时约为2h,大时间跨度的观测使得 风场误差主要源于风速和风向在时间上的波动。由 于此次实验采用的风场数据为 ECMWF 模拟的数 据,风速和风向不确定性分别为 $\Delta u = \pm 1 \text{ m/s},$ $\Delta \theta = \pm 14^{\circ[20]}$ 。

3.5 NO_x 排放通量及误差

在确定 NO_x 排放通量误差源及误差后,本文 计算武汉三环 NO_x 排放通量及其误差,结果如图 9 所示。可以看出,NO_x 的平均排放通量为 10.78 mol/s,最低为 7.78 mol/s,最高为 15.71 mol/s,每次观测的 NO_x 排放通量较为接近。

由于人们目前尚未对武汉的 NO_x 排放通量开 展相关研究,缺乏相应的数据,因此本文进行了横向 对比。武汉三环和北京五环规模接近,因此本文将 此次观测的 NO_x 排放通量与北京五环的 NO_x 排 放通量进行对比,结果发现,此次武汉三环相较于北 京五环 2018 年 4 月 的 NO_x 排 放 通 量 低 75.87%^[11],这从侧面反映了此次观测的武汉三环 NO_x 排放极低。

图 9 武汉三环的 NO_x 排放通量及误差 Fig. 9 NO_x emission flux of the third ring road of Wuhan and its error

3.6 误差源贡献分析

由于 NO_x 排放通量误差由各个误差源引起的 通量误差合成,线性的百分比表示法在本研究中的 适用性有一定欠缺,因此本文采用(13)式表示误差 占比。

$$R_i^2 = \frac{\Delta F_i^2}{\Delta F^2},\tag{13}$$

式中: ΔF_i 为第*i* 个误差源引起的通量误差; ΔF 为 总的通量误差,由(13)式可知 $\Sigma R_i^2 = 1$ 。

图 10 为不同误差源的误差贡献,从图中可以发现,NO_x 排放通量误差的最大来源为风速的不确定

第 41 卷 第 10 期/2021 年 5 月/光学学报

性和风向的不确定性,它们是 NO_x 排放通量误差 的主要来源。在此次的观测中,风速的不确定性和 风向的不确定性引起的误差占 0.8 以上。通过图 10 还可以发现,[NO_x]/[NO₂]误差引起的通量误 差的占比均在 0.1 以下,说明[NO_x]/[NO₂]误差 引起的通量误差占比较低。

- 图 10 不同误差源引起的武汉三环 NO_x 通量误差占比 R²(使用[NO_x]/[NO₂]实时测量值及其误差计算 NO_x 排放通量和通量误差)
- Fig. 10 Proportion (R^2) of NO_x emission flux error of the third ring road of Wuhan caused by different error sources (using real-time $[NO_x]/[NO_2]$ and its errors for NO_x emission flux and flux errors calculation)

若使用[NO_x]/[NO₂]均值计算通量,则 [NO_x]/[NO₂]误差主要来源于[NO_x]/[NO₂]的 空间分布不确定性,在这种情况下计算的通量误差 占比如图 11 所示。[NO_x]/[NO₂]误差占比在 2 月 29 日、3 月 5 日、3 月 11 日、3 月 13 日和 3 月 14 日 均在 0.1 以内,但是在 3 月 3 日和 10 日,[NO_x]/ [NO₂]误差占比分别为 0.41 和 0.67,引起了较大 的 NO_x 通量误差占比,这是因为在 3 月 3 日和 3 月 10 日[NO_x]/[NO₂]的空间分布波动较大。

将图 11 和图 10 对比可以发现,使用 $[NO_x]/[NO_2]$ 的实时测量值能有效降低由 $[NO_x]/[NO_2]$ 误差引起的通量误差。但是当地面存在大量 NO_x 排放源时,使用 $[NO_x]/[NO_2]$ 实时比例反而会引 起较大误差。 NO_xNO_2 和 O_3 在大气中的主要化学 反应为^[1]

$$NO_2 + h\nu \rightarrow NO + O(^3P),$$
 (14)

$$O_2 + O(^{3}P) \rightarrow O_3, \qquad (15)$$

$$\mathrm{NO} + \mathrm{O}_3 \rightarrow \mathrm{NO}_2 + \mathrm{O}_2 \,. \tag{16}$$

NO2 在光化学作用下生成 NO, O2 和 O(³P)生

- 图 11 不同误差源引起的通量误差占比 R²(使用 [NO_x]/[NO₂]均值及其误差计算 NO_x 排放通量 和通量误差)
- Fig. 11 Proportion (R^2) of NO_x emission flux error of the third ring road of Wuhan caused by different error sources (using average $[NO_x]/[NO_2]$ and its errors for NO_x emission flux and flux errors calculation)

成 O₃,NO 与空气中的 O₃ 反应生成 NO₂,NO 与 NO₂ 形成循环反应,直至达到动态大气化学反应 平衡。

NO_x 排放源直接排放的 NO_x 多为 NO,排放 后的 NO 和空气中的 O₃ 反应生成 NO₂。理论上, NO_x 反应达到动态平衡需要无穷长时间,但是当 NO₂ 的生成速率接近其最大生成速率的 0.05 倍 时,可认为 NO_x 化学反应达到动态平衡,这个过程 需要约 2 min,因此在这 2 min 时间范围内测量的 $[NO_x]/[NO_2]$ 不具有代表性,会产生很大的不确 定性。当地面有大量的 NO_x 排放源时,采用实时 测量 的办法很有可能会采集到这 2 min 内的 $[NO_x]/[NO_2]$,导致 $[NO_x]/[NO_2]$ 产生很大的不 确定性,因此在这种情况下不推荐使用这种方法。

4 结 论

2020年2月29日至3月14日,利用车载 MAX-DOAS对武汉三环大气中NO_x的浓度进行 了测量,获取了观测期间武汉三环NO₂垂直柱浓度 的空间分布以及NO_x的排放通量。结果表明,观 测期间武汉三环内的NO_x排放通量较低,平均排 放通量约为10.78 mol/s,最低为7.78 mol/s,最高 为15.71 mol/s。其误差分析表明,此次观测期间 NO_x 排放通量误差的主要来源为风场不确定性(风 速不确定性和风向不确定性),由风场不确定性引起 的通量误差占比在 0.8 以上。将使用[NO_x]/ [NO₂]实时比例及其误差引起的通量误差与使用平 均[NO_x]/[NO₂]及其误差引起的通量误差进行对 比,结果表明,如果在武汉三环使用平均[NO_x]/ [NO₂],则[NO_x]/[NO₂]误差引起的通量误差可 能会成为主要误差源,而如果采用实时[NO_x]/ [NO₂]及其误差,则[NO_x]/[NO₂]误差引起的通 量误差占比在 0.1 以内,占比低,但在有大量近地面 排放源的地方不推荐使用实时[NO_x]/[NO₂]。

第 41 卷 第 10 期/2021 年 5 月/光学学报

参考文献

- [1] Seinfeld J H, Pandis S N, Noone K. Atmospheric chemistry and physics: from air pollution to climate change[J]. Physics Today, 1998, 51(10): 88-90.
- Zhang Q, Zheng Y, Tong D, et al. Drivers of improved PM_{2.5} air quality in China from 2013 to 2017 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (49): 24463-24469.
- [3] Li A, Zhang J, Xie P H, et al. Variation of temporal and spatial patterns of NO₂ in Beijing using OMI and mobile DOAS[J]. Science China Chemistry, 2015, 58(9): 1367-1376.
- Platt U, Stutz J. Differential absorption spectroscopy
 [M] // Physics of Earth and Space Environments. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 135-174.
- [5] Wagner T, Ibrahim O, Shaiganfar R, et al. Mobile MAX-DOAS observations of tropospheric trace gases
 [J]. Atmospheric Measurement Techniques, 2010, 3 (1): 129-140.
- [6] Mou F S, Li A, Xie P H, et al. Study on regional distribution of air pollutants in North China plain by mobile DOAS[J]. Acta Optica Sinica, 2016, 36(4): 0401001.
 牟福生,李昂,谢品华,等. 华北平原污染气体区域

午禰主, 学印, 翊而平, 寻, 平北千原75架 (译区域 分布的车载 DOAS 遥测研究 [J]. 光学学报, 2016, 36(4): 0401001.

- Shaiganfar R, Beirle S, Sharma M, et al. Estimation of NO_x emissions from Delhi using Car MAX-DOAS observations and comparison with OMI satellite data
 [J]. Atmospheric Chemistry and Physics, 2011, 11 (21): 10871-10887.
- [8] Wang S S, Zhou B, Wang Z R, et al. Remote sensing of NO₂ emission from the central urban area of Shanghai (China) using the mobile DOAS technique [J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D13): D13305.
- [9] Wu F C, Li A, Xie P H, et al. Dectection and

第 41 卷 第 10 期/2021 年 5 月/光学学报

研究论文

distribution of tropospheric NO_2 vertical column density based on mobile multi-axis differential optical absorption spectroscopy [J]. Acta Physica Sinica, 2015, 64(11): 114211.

吴丰成,李昂,谢品华,等.车载多轴差分吸收光谱 探测对流层 NO₂ 分布研究[J].物理学报,2015,64 (11):114211.

- [10] Davis Z Y W, Baray S, McLinden C A, et al. Estimation of NO_x and SO_2 emissions from Sarnia, Ontario, using a mobile MAX-DOAS (multi-AXis differential optical absorption spectroscopy) and a NO_x analyzer [J]. Atmospheric Chemistry and Physics, 2019, 19(22): 13871-13889.
- [11] Platt U. Dry deposition of SO₂ [J]. Atmospheric Environment, 1978, 12(1/2/3): 363-367.
- [12] Shen L L, Qin M, Sun W, et al. Cruise observation of SO₂, NO₂ and benzene with mobile portable DOAS in the industrial park [J]. Spectroscopy and Spectral Analysis, 2016, 36(6): 1936-1940.
 沈兰兰,秦敏,孙伟,等.基于车载便携式 DOAS 对 工业园区 SO₂, NO₂ 和苯的走航观测 [J]. 光谱学与 光谱分析, 2016, 36(6): 1936-1940.
- [13] Zhang Q, Xie P H, Xu J, et al. Two-dimensional fast imaging of smoke plumes based on spectral telemetry[J]. Acta Optica Sinica, 2020, 40(9): 0930002.
 张强,谢品华,徐晋,等. 基于光谱遥测技术的烟羽 二维分布快速成像[J]. 光学学报, 2020, 40(9): 0930002.
- [14] Huang Y Y, Li A, Xie P H, et al. NO_x emission flux measurements with multiple mobile-DOAS

instruments in Beijing[J]. Remote Sensing, 2020, 12 (16): 2527.

- [15] Danckaert T, Fayt C, van Roozendael M, et al. QDOAS software user manual [EB/OL]. [2020-12-01]. http://uv-vis.aeronomie.be/software/QDOAS/ QDOAS_manual.pdf.
- [16] Mou F S, Xie P H, Li A, et al. Retrieval of aerosol profile based on the ring effect observed by MAX-DOAS [J]. Acta Optica Sinica, 2015, 35 (11): 1101001.
 牟福生,谢品华,李昂,等.基于 MAX-DOAS 观测 大气 Ring 效应的气溶胶消光廓线反演[J].光学学报, 2015, 35(11): 1101001.
- [17] BIPM. Evaluation of measurement data—guide to the expression of uncertainty in measurement [EB/OL]. [2020-12-01]. https: // www. bipm. org/utils/ common/documents/jcgm/JCGM_100_2008_E.pdf.
- [18] Vandaele A C, Hermans C, Simon P C, et al. Measurements of the NO₂ absorption cross-section from 42000 cm⁻¹ to 10000 cm⁻¹ (238-1000 nm) at 220 K and 294 K [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1998, 59(3/4/5): 171-184.
- [19] Theys N, van Roozendael M, Hendrick F, et al. Retrieval of stratospheric and tropospheric BrO columns from multi-axis DOAS measurements at Reunion Island (21° S, 56° E) [J]. Atmospheric Chemistry and Physics, 2007, 7(18): 4733-4749.
- [20] Beirle S, Borger C, Dörner S, et al. Pinpointing nitrogen oxide emissions from space [J]. Science Advances, 2019, 5(11): eaax9800.